| [1] |
Mourou G, Tajima T. More intense, shorter pulses[J]. Science, 2011, 331(6013): 41-42. doi: 10.1126/science.1200292
|
| [2] |
Krausz F, Brabec T, Schnürer M, et al. Extreme nonlinear optics: exposing matter to a few periods of light[J]. Optics and Photonics News, 1998, 9(7): 46-51. doi: 10.1364/opn.9.7.000046
|
| [3] |
Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
|
| [4] |
Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
|
| [5] |
Bastiani S, Rousse A, Geindre J P, et al. Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths[J]. Physical Review E, 1997, 56(6): 7179-7185. doi: 10.1103/PhysRevE.56.7179
|
| [6] |
Borot A, Malvache A, Chen Xiaowei, et al. Attosecond control of collective electron motion in plasmas[J]. Nature Physics, 2012, 8(5): 416-421. doi: 10.1038/nphys2269
|
| [7] |
Tian Ye, Liu Jiansheng, Wang Wentao, et al. Electron emission at locked phases from the laser-driven surface plasma wave[J]. Physical Review Letters, 2012, 109: 115002. doi: 10.1103/PhysRevLett.109.115002
|
| [8] |
Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser[J]. Physical Review Letters, 2001, 86(16): 3562-3565. doi: 10.1103/PhysRevLett.86.3562
|
| [9] |
Gaillard S A, Kluge T, Flippo K A, et al. Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets[J]. Physics of Plasmas, 2011, 18: 056710. doi: 10.1063/1.3575624
|
| [10] |
Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92: 175003. doi: 10.1103/PhysRevLett.92.175003
|
| [11] |
Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
|
| [12] |
Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
|
| [13] |
Garcia Ruiz R F, Vernon A R, Binnersley C L, et al. High-precision multiphoton ionization of accelerated laser-ablated species[J]. Physical Review X, 2018, 8: 041005.
|
| [14] |
Klaiber M, Hatsagortsyan K Z, Keitel C H. Tunneling dynamics in multiphoton ionization and attoclock calibration[J]. Physical Review Letters, 2015, 114: 083001. doi: 10.1103/PhysRevLett.114.083001
|
| [15] |
Eremina E, Liu X, Rottke H, et al. Laser-induced non-sequential double ionization investigated at and below the threshold for electron impact ionization[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36(15): 3269-3280. doi: 10.1088/0953-4075/36/15/308
|
| [16] |
Bergues B, Kübel M, Johnson N G, et al. Attosecond tracing of correlated electron-emission in non-sequential double ionization[J]. Nature Communications, 2012, 3: 813. doi: 10.1038/ncomms1807
|
| [17] |
Milošević D B, Paulus G G, Bauer D, et al. Above-threshold ionization by few-cycle pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(14): R203-R262. doi: 10.1088/0953-4075/39/14/R01
|
| [18] |
Quan W, Lin Z, Wu M, et al. Classical aspects in above-threshold ionization with a midinfrared strong laser field[J]. Physical Review Letters, 2009, 103: 093001. doi: 10.1103/PhysRevLett.103.093001
|
| [19] |
Zhang Xiaoshi, Lytle A L, Cohen O, et al. Quantum-path control in high-order harmonic generation at high photon energies[J]. New Journal of Physics, 2008, 10: 025021. doi: 10.1088/1367-2630/10/2/025021
|
| [20] |
全威, 柳晓军, 陈京. 超快强激光驱动的原子分子电离[J]. 物理, 2015, 44(1): 22-28 doi: 10.7693/wl20150104Quan Wei, Liu Xiaojun, Chen Jing. Atom ionization driven by ultrafast intense laser fields[J]. Physics, 2015, 44(1): 22-28 doi: 10.7693/wl20150104
|
| [21] |
Hickstein D D, Carlson D R, Kowligy A, et al. High-harmonic generation in periodically poled waveguides[J]. Optica, 2017, 4(12): 1538-1544. doi: 10.1364/OPTICA.4.001538
|
| [22] |
Li Mingxuan, Tang Xiangyu, Wang Huiyong, et al. Efficient generation of Bessel-Gauss attosecond pulse trains via nonadiabatic phase-matched high-order harmonics[J]. Light: Science & Applications, 2025, 14: 181.
|
| [23] |
Westerberg S, Redon M, Raab A K, et al. Influence of the laser pulse duration in high-order harmonic generation[J]. APL Photonics, 2025, 10: 096103. doi: 10.1063/5.0272968
|
| [24] |
陈德应, 王玉铨, 夏元钦. 高次谐波产生阿秒极紫外和X光脉冲研究新进展[J]. 强激光与粒子束, 2008, 20(9): 1409-1412Chen Deying, Wang Yuquan, Xia Yuanqin. Recent progress of attosecond XUV and X-ray pulses formed by high-harmonic generation[J]. High Power Laser and Particle Beams, 2008, 20(9): 1409-1412
|
| [25] |
Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994-1997. doi: 10.1103/PhysRevLett.71.1994
|
| [26] |
Liu Yaoli, Wang J, Chu H H. Ion-based high-order harmonic generation from water window to keV region with a transverse disruptive pulse for quasi-phase-matching[J]. Optics Express, 2022, 30(2): 1365-1380. doi: 10.1364/OE.447796
|
| [27] |
Liu Yaoli, Wang J, Chu H H. Ion-based high-order harmonic generation for 1.6-keV X-ray driven by wavelength 405 nm pulse[C]//Proceedings of the CLEO 2023. 2023.
|
| [28] |
葛佩佩, 李靖, 刘运全. 从脉冲激光到阿秒光源, 从光电效应到阿秒物理——解读2023年度诺贝尔物理学奖[J]. 物理, 2023, 52(12): 807-815 doi: 10.7693/wl20231201Ge Peipei, Li Jing, Liu Yunquan. From ultrashort to attosecond light pulses, from the photoelectric effect to attosecond physics——Interpretation of the 2023 Nobel Prize in Physics[J]. Physics, 2023, 52(12): 807-815 doi: 10.7693/wl20231201
|
| [29] |
李逵, 孟润宇, 李睿晅, 等. 基于高次谐波的高功率高稳定13.5 nm极紫外光源[J]. 中国激光, 2024, 51: 0701011 doi: 10.3788/CJL231507Li Kui, Meng Runyu, Li Ruixuan, et al. High power and high stability 13.5 nm extreme ultraviolet light source driven by high-order harmonics[J]. Chinese Journal of Lasers, 2024, 51: 0701011 doi: 10.3788/CJL231507
|
| [30] |
高记星, 娄智远, 杨帆, 等. 基于百太瓦级激光系统驱动的高能量13 nm波段高次谐波产生[J]. 光学学报, 2024, 44: 0214001 doi: 10.3788/AOS231482Gao Jixing, Lou Zhiyuan, Yang Fan, et al. High-energy high-order harmonic generation around 13 nm wavelength based on hundred-terawatt-level laser system[J]. Acta Optica Sinica, 2024, 44: 0214001 doi: 10.3788/AOS231482
|
| [31] |
Goh S J, Bastiaens H J M, Vratzov B, et al. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range[J]. Optics Express, 2015, 23(4): 4421-4434. doi: 10.1364/OE.23.004421
|
| [32] |
Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Physical Review Letters, 1992, 68(24): 3535-3538. doi: 10.1103/PhysRevLett.68.3535
|
| [33] |
Chan W F, Cooper G, Guo X, et al. Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution. III. The photoabsorption of argon, krypton, and xenon[J]. Physical Review A, 1992, 46(1): 149-171. doi: 10.1103/PhysRevA.46.149
|
| [34] |
Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
|
| [35] |
Moldosanov K A, Postnikov A V, Lelevkin V M, et al. Terahertz imaging technique for cancer diagnostics using frequency conversion by gold nano-objects[J]. Ferroelectrics, 2017, 509(1): 158-166. doi: 10.1080/00150193.2017.1296344
|
| [36] |
Zhang Xicheng, Shkurinov A, Zhang Yan. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1): 16-18. doi: 10.1038/nphoton.2016.249
|
| [37] |
Dienst A, Hoffmann M C, Fausti D, et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor[J]. Nature Photonics, 2011, 5(8): 485-488. doi: 10.1038/nphoton.2011.124
|
| [38] |
Manceau J M, Loukakos P A, Tzortzakis S. Direct acoustic phonon excitation by intense and ultrashort terahertz pulses[J]. Applied Physics Letters, 2010, 97: 251904. doi: 10.1063/1.3529466
|
| [39] |
Liu Mengkun, Hwang H Y, Tao Hu, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 2012, 487(7407): 345-348. doi: 10.1038/nature11231
|
| [40] |
Kealhofer C, Schneider W, Ehberger D, et al. All-optical control and metrology of electron pulses[J]. Science, 2016, 352(6284): 429-433. doi: 10.1126/science.aae0003
|
| [41] |
E Yiwen, Zhang Liangliang, Tsypkin A, et al. Progress, challenges, and opportunities of terahertz emission from liquids[J]. Journal of the Optical Society of America B, 2022, 39(3): A43-A51. doi: 10.1364/JOSAB.446095
|
| [42] |
Li Zhengliang, Bian Xuebin. Terahertz radiation induced by shift currents in liquids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2315297121.
|
| [43] |
Rogalski A, Sizov F. Terahertz detectors and focal plane arrays[J]. Opto-Electronics Review, 2011, 19(3): 346-404. doi: 10.1201/b10319-30
|
| [44] |
Zhang Mingyu, Ban Dayan, Xu Chao, et al. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber[J]. ACS Nano, 2019, 13(11): 13285-13292. doi: 10.1021/acsnano.9b06332
|
| [45] |
Zhuo H B, Zhang S J, Li X H, et al. Terahertz generation from laser-driven ultrafast current propagation along a wire target[J]. Physical Review E, 2017, 95: 013201. doi: 10.1103/PhysRevE.95.013201
|
| [46] |
Smith G S. Teaching antenna radiation from a time-domain perspective[J]. American Journal of Physics, 2001, 69(3): 288-300. doi: 10.1119/1.1320439
|
| [47] |
Li Zhichao, Zheng Jian. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse[J]. Physics of Plasmas, 2007, 14: 054505. doi: 10.1063/1.2734945
|
| [48] |
Li Jitao, Li Jie. Terahertz (THz) generator and detection[J]. Electrical Science & Engineering, 2020, 2(1): 11-25. doi: 10.30564/ese.v2i1.1777
|
| [49] |
Kodama R, Sentoku Y, Chen Z L, et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 2004, 432(7020): 1005-1008. doi: 10.1038/nature03133
|
| [50] |
Habara H, Adumi K, Yabuuchi T, et al. Surface acceleration of fast electrons with relativistic self-focusing in preformed plasma[J]. Physical Review Letters, 2006, 97: 095004. doi: 10.1103/PhysRevLett.97.095004
|
| [51] |
Li Y T, Yuan X H, Xu M H, et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 2006, 96: 165003. doi: 10.1103/PhysRevLett.96.165003
|
| [52] |
Tokita S, Otani K, Nishoji T, et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 2011, 106: 255001. doi: 10.1103/PhysRevLett.106.255001
|
| [53] |
Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 2013, 110: 155001. doi: 10.1103/PhysRevLett.110.155001
|
| [54] |
Tokita S, Sakabe S, Nagashima T, et al. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses[J]. Scientific Reports, 2015, 5: 8268. doi: 10.1038/srep08268
|
| [55] |
Teramoto K, Tokita S, Terao T, et al. Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires[J]. Applied Physics Letters, 2018, 113: 051101. doi: 10.1063/1.5031873
|
| [56] |
Tian Ye, Liu Jiansheng, Bai Yafeng, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 2017, 11(4): 242-246. doi: 10.1038/nphoton.2017.16
|
| [57] |
Zhang Dongdong, Zeng Yushan, Bai Yafeng, et al. Coherent surface plasmon polariton amplification via free-electron pumping[J]. Nature, 2022, 611(7934): 55-60. doi: 10.1038/s41586-022-05239-2
|
| [58] |
Shao Shuoting, Wang Xiangbing, Huang Rong, et al. Efficiently laser driven terahertz surface plasmon polaritons on long metal wire[J]. Physical Review X, 2025, 15: 031025. doi: 10.1103/mkyj-77k8
|
| [59] |
Wang Jianshuo, Zhang Zhijun, Zhou Shiyi, et al. Radiation dynamics and manipulation of extreme terahertz surface wave on a metal wire[J]. Laser & Photonics Reviews, 2025, 19: 2400954. doi: 10.1002/lpor.202400954
|
| [60] |
Matlis N H, Plateau G R, van Tilborg J, et al. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation[J]. Journal of the Optical Society of America B, 2011, 28(1): 23-27. doi: 10.1364/JOSAB.28.000023
|
| [61] |
Shan Jie, Weling A S, Knoesel E, et al. Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling[J]. Optics Letters, 2000, 25(6): 426-428. doi: 10.1364/OL.25.000426
|
| [62] |
Berden G, Jamison S P, Macleod A M, et al. Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles[J]. Physical Review Letters, 2004, 93: 114802. doi: 10.1103/PhysRevLett.93.114802
|
| [63] |
Kim K Y, Yellampalle B, Taylor A J, et al. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons[J]. Optics Letters, 2007, 32(14): 1968-1970. doi: 10.1364/OL.32.001968
|
| [64] |
Sun F G, Jiang Zhiping, Zhang X C. Analysis of terahertz pulse measurement with a chirped probe beam[J]. Applied Physics Letters, 1998, 73(16): 2233-2235. doi: 10.1063/1.121685
|
| [65] |
Johnson J A, Brunner F D J, Grübel S, et al. Distortion-free enhancement of terahertz signals measured by electro-optic sampling. II. Experiment[J]. Journal of the Optical Society of America B, 2014, 31(5): 1035-1040. doi: 10.1364/JOSAB.31.001035
|
| [66] |
Jackson J D. Classical electrodynamics[M]. New York: Wiley, 1975.
|
| [67] |
陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
|
| [68] |
Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
|
| [69] |
Aniculaesei C, Ha T, Yoffe S, et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9: 014001. doi: 10.1063/5.0161687
|
| [70] |
Picksley A, Stackhouse J, Benedetti C, et al. Matched guiding and controlled injection in dark-current-free, 10-GeV-class, channel-guided laser-plasma accelerators[J]. Physical Review Letters, 2024, 133: 255001. doi: 10.1103/PhysRevLett.133.255001
|
| [71] |
Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
|
| [72] |
Ke L T, Feng K, Wang W T, et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 2021, 126: 214801. doi: 10.1103/PhysRevLett.126.214801
|
| [73] |
Plateau G R, Geddes C G R, Thorn D B, et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy[J]. Physical Review Letters, 2012, 109: 064802. doi: 10.1103/PhysRevLett.109.064802
|
| [74] |
Maier A R, Delbos N M, Eichner T, et al. Decoding sources of energy variability in a laser-plasma accelerator[J]. Physical Review X, 2020, 10: 031039.
|
| [75] |
Faure J, van der Geer B, Beaurepaire B, et al. Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction[J]. Physical Review Accelerators and Beams, 2016, 19: 021302. doi: 10.1103/PhysRevAccelBeams.19.021302
|
| [76] |
Zhang C J, Hua J F, Wan Y, et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch[J]. Physical Review Letters, 2017, 119: 064801. doi: 10.1103/PhysRevLett.119.064801
|
| [77] |
Wan Yang, Seemann O, Tata S, et al. Direct observation of relativistic broken plasma waves[J]. Nature Physics, 2022, 18(10): 1186-1190. doi: 10.1038/s41567-022-01717-6
|
| [78] |
Wan Yang, Tata S, Seemann O, et al. Real-time visualization of the laser-plasma wakefield dynamics[J]. Science Advances, 2024, 10: eadj3595. doi: 10.1126/sciadv.adj3595
|
| [79] |
Ta Phuoc K, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
|
| [80] |
Chen L M, Yan W C, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
|
| [81] |
Chen Min, Luo Ji, Li Feiyu, et al. Tunable synchrotron-like radiation from centimeter scale plasma channels[J]. Light: Science & Applications, 2016, 5: e16015.
|
| [82] |
Yan Wenchao, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. doi: 10.1038/nphoton.2017.100
|
| [83] |
Yu Changhai, Liu Jiansheng, Wang Wentao, et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front[J]. Applied Physics Letters, 2018, 112: 133503. doi: 10.1063/1.5019406
|
| [84] |
Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061. doi: 10.1103/physrevx.10.011061
|
| [85] |
Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6: eaaz7240. doi: 10.1126/sciadv.aaz7240
|
| [86] |
Peng H, Huang T W, Jiang K, et al. Coherent subcycle optical shock from a superluminal plasma wake[J]. Physical Review Letters, 2023, 131: 145003. doi: 10.1103/PhysRevLett.131.145003
|
| [87] |
Ma Yue, Hua Jianfei, Liu Dexiang, et al. Compact polarized X-ray source based on all-optical inverse compton scattering[J]. Physical Review Applied, 2023, 19: 014073. doi: 10.1103/PhysRevApplied.19.014073
|
| [88] |
Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
|
| [89] |
Yu Changhai, Qin Zhiyong, Zhang Zhijun, et al. Laser wakefield electron acceleration and novel radiation sources (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0101002. doi: 10.3788/CJL231403
|
| [90] |
Guénot D, Gustas D, Vernier A, et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nature Photonics, 2017, 11(5): 293-296. doi: 10.1038/nphoton.2017.46
|
| [91] |
Rovige L, Huijts J, Andriyash I, et al. Demonstration of stable long-term operation of a kilohertz laser-plasma accelerator[J]. Physical Review Accelerators and Beams, 2020, 23: 093401. doi: 10.1103/PhysRevAccelBeams.23.093401
|
| [92] |
Salehi F, Le M, Railing L, et al. Laser-accelerated, low-divergence 15-MeV quasimonoenergetic electron bunches at 1 kHz[J]. Physical Review X, 2021, 11: 021055. doi: 10.1103/physrevx.11.021055
|
| [93] |
Huijts J, Rovige L, Andriyash I A, et al. Waveform control of relativistic electron dynamics in laser-plasma acceleration[J]. Physical Review X, 2022, 12: 011036. doi: 10.1070/qe2016v046n01abeh015944
|
| [94] |
Bohlen S, Wood J C, Brümmer T, et al. Stability of ionization-injection-based laser-plasma accelerators[J]. Physical Review Accelerators and Beams, 2022, 25: 031301. doi: 10.1103/PhysRevAccelBeams.25.031301
|
| [95] |
谢波, 张晓辉, 李天月, 等. 拍瓦飞秒激光与近临界密度等离子体相互作用的电子加速及betatron辐射产生数值模拟[J]. 强激光与粒子束, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033
|
| [96] |
Xiang Zhongtao, Yu Changhai, Qin Zhiyong, et al. Ultrahigh-brightness 50 MeV electron beam generation from laser wakefield acceleration in a weakly nonlinear regime[J]. Matter and Radiation at Extremes, 2024, 9: 035201. doi: 10.1063/5.0189460
|
| [97] |
Yu Changhai, Qin Zhiyong, Xiang Zhongtao, et al. Sub-per-mille bunch energy spread in a quasi-linear laser-wakefield accelerator via periodical de-chirpings[J]. Communications Physics, 2025, 8: 137. doi: 10.1038/s42005-025-02057-6
|