留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重频高功率飞秒激光驱动的新型超快粒子束和强脉冲辐射源

蔡金坛 余昌海 秦志勇 焦旭辉 项仲涛 王健硕 成家晖 何熙陆 曹玉腾 雷琪 霍韵沛 邱胜达 刘建胜

蔡金坛, 余昌海, 秦志勇, 等. 重频高功率飞秒激光驱动的新型超快粒子束和强脉冲辐射源[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250387
引用本文: 蔡金坛, 余昌海, 秦志勇, 等. 重频高功率飞秒激光驱动的新型超快粒子束和强脉冲辐射源[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250387
Cai Jintan, Yu Changhai, Qin Zhiyong, et al. Novel ultrafast particle beam and intense pulse radiation source driven by repetitive high-power femtosecond laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250387
Citation: Cai Jintan, Yu Changhai, Qin Zhiyong, et al. Novel ultrafast particle beam and intense pulse radiation source driven by repetitive high-power femtosecond laser[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250387

重频高功率飞秒激光驱动的新型超快粒子束和强脉冲辐射源

doi: 10.11884/HPLPB202638.250387
基金项目: 国家重点研发项日(2023YFA1406804) ; 上海市教委科研创新计划重大项目(2021-01-07-00-02-E00118); 国家自然科学基金项目(12575258, 11974251, 11904377 ); 上海市自然科学基金面上项目(25ZR1401282) ; 全国重点实验室基金项目(SKLLIM-G-2503)
详细信息
    作者简介:

    蔡金坛,1000511424@smail.shnu.edu.cn

    通讯作者:

    余昌海,yuchanghai@shnu.edu.cn

    刘建胜,liujs@shnu.edu.cn

  • 中图分类号: O434,O437,O539

Novel ultrafast particle beam and intense pulse radiation source driven by repetitive high-power femtosecond laser

  • 摘要: 超快强激光具有超快时域特性和高峰值功率特性。随着激光技术的迅猛发展,其脉冲重复频率也得到逐步提高,这种重频高功率飞秒激光为人类提供了前所未有的超快时间和超高强场等极端物理条件,为驱动产生新型超快粒子束源和强脉冲辐射源等前沿基础科学和交叉应用研究提供了新机遇、新途径和新方向。本文将主要介绍上海师范大学超快光物理研究团队基于重频高功率飞秒激光系统新建的新型超快光物理综合实验平台,以及近期围绕气体高次谐波、强太赫兹辐射源和高亮度超快电子束源产生及其相关应用研究方面所取得的研究进展,并简述了若干前沿物理的主要进展和未来的展望。
  • 图  1  上海师范大学超快光物理实验室研究平台

    Figure  1.  Experimental platform layout of the Ultrafast Light Physics laboratory (ULIP)

    图  2  重频高功率飞秒激光系统光路整体结构分布图

    Figure  2.  Schematic of the overall optical layout for the repetitive high-power femtosecond laser system

    图  3  0.8 kHz钛宝石激光系统(相干公司)及其输出参数

    Figure  3.  Key parameters of the 0.8 kHz Ti: sapphire laser system (Coherent)

    图  4  0.8 kHz激光的能量长期稳定性与聚焦特性测量

    Figure  4.  Long-term energy stability and focal spot measurements of the 0.8 kHz laser pulse

    图  5  10 Hz高功率激光输出参数

    Figure  5.  Output parameters of the 10 Hz high-power laser pulse

    图  6  高次谐波产生和实验装置示意图

    Figure  6.  Schematic of the HHG experimental setup

    图  7  压缩前后光谱与脉冲持续时间

    Figure  7.  Spectrum and pulse duration before and after the pulse compression

    图  8  气体高次谐波的光斑和光谱

    Figure  8.  Beam pattern and spectra of the generated gas high-order harmonic

    图  9  气压对谐波强度的影响

    Figure  9.  Influence of gas pressure on the intensity of high-order harmonic

    图  10  太赫兹产生和诊断实验示意图。

    Figure  10.  Experimental schematic diagram of THz generation and characterization

    图  11  金属丝长度对太赫兹光斑及偏振特性的影响

    Figure  11.  Effect of Wire Length on Terahertz Beam Spot and Polarization Properties

    图  13  太赫兹能量作为金属丝长度L的函数

    Figure  13.  THz energy as a function of the wire length L

    图  12  测量的太赫兹场和频谱

    Figure  12.  Measured THz fields and spectra

    图  14  激光驱动的电流天线辐射模型

    Figure  14.  Scenario of laser driven wire antenna radiation

    图  15  弱非线性尾波场中高品质电子束的注入与加速过程

    Figure  15.  High quality electron injection and acceleration in a weakly nonlinear wakefield

    图  16  基于十太瓦级重频飞秒激光驱动的高亮度超快电子束产生实验结果

    Figure  16.  Experimental results for high brightness ultrafast electron beam generation based on a 10 TW repetitive femtosecond laser

    图  17  准线性尾波场加速产生超低能散度的高能粒子束

    Figure  17.  Ultralow-energy-spread high-energy particle beam generation via quasi-linear wakefield acceleration

    图  18  级联密度调制等离子体的产生及其对激光传播的影响

    Figure  18.  Generation of cascaded density-modulated plasma and its effect on laser propagation

  • [1] Mourou G, Tajima T. More intense, shorter pulses[J]. Science, 2011, 331(6013): 41-42. doi: 10.1126/science.1200292
    [2] Krausz F, Brabec T, Schnürer M, et al. Extreme nonlinear optics: exposing matter to a few periods of light[J]. Optics and Photonics News, 1998, 9(7): 46-51. doi: 10.1364/opn.9.7.000046
    [3] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [4] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [5] Bastiani S, Rousse A, Geindre J P, et al. Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths[J]. Physical Review E, 1997, 56(6): 7179-7185. doi: 10.1103/PhysRevE.56.7179
    [6] Borot A, Malvache A, Chen Xiaowei, et al. Attosecond control of collective electron motion in plasmas[J]. Nature Physics, 2012, 8(5): 416-421. doi: 10.1038/nphys2269
    [7] Tian Ye, Liu Jiansheng, Wang Wentao, et al. Electron emission at locked phases from the laser-driven surface plasma wave[J]. Physical Review Letters, 2012, 109: 115002. doi: 10.1103/PhysRevLett.109.115002
    [8] Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser[J]. Physical Review Letters, 2001, 86(16): 3562-3565. doi: 10.1103/PhysRevLett.86.3562
    [9] Gaillard S A, Kluge T, Flippo K A, et al. Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets[J]. Physics of Plasmas, 2011, 18: 056710. doi: 10.1063/1.3575624
    [10] Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92: 175003. doi: 10.1103/PhysRevLett.92.175003
    [11] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
    [12] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [13] Garcia Ruiz R F, Vernon A R, Binnersley C L, et al. High-precision multiphoton ionization of accelerated laser-ablated species[J]. Physical Review X, 2018, 8: 041005.
    [14] Klaiber M, Hatsagortsyan K Z, Keitel C H. Tunneling dynamics in multiphoton ionization and attoclock calibration[J]. Physical Review Letters, 2015, 114: 083001. doi: 10.1103/PhysRevLett.114.083001
    [15] Eremina E, Liu X, Rottke H, et al. Laser-induced non-sequential double ionization investigated at and below the threshold for electron impact ionization[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36(15): 3269-3280. doi: 10.1088/0953-4075/36/15/308
    [16] Bergues B, Kübel M, Johnson N G, et al. Attosecond tracing of correlated electron-emission in non-sequential double ionization[J]. Nature Communications, 2012, 3: 813. doi: 10.1038/ncomms1807
    [17] Milošević D B, Paulus G G, Bauer D, et al. Above-threshold ionization by few-cycle pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(14): R203-R262. doi: 10.1088/0953-4075/39/14/R01
    [18] Quan W, Lin Z, Wu M, et al. Classical aspects in above-threshold ionization with a midinfrared strong laser field[J]. Physical Review Letters, 2009, 103: 093001. doi: 10.1103/PhysRevLett.103.093001
    [19] Zhang Xiaoshi, Lytle A L, Cohen O, et al. Quantum-path control in high-order harmonic generation at high photon energies[J]. New Journal of Physics, 2008, 10: 025021. doi: 10.1088/1367-2630/10/2/025021
    [20] 全威, 柳晓军, 陈京. 超快强激光驱动的原子分子电离[J]. 物理, 2015, 44(1): 22-28 doi: 10.7693/wl20150104

    Quan Wei, Liu Xiaojun, Chen Jing. Atom ionization driven by ultrafast intense laser fields[J]. Physics, 2015, 44(1): 22-28 doi: 10.7693/wl20150104
    [21] Hickstein D D, Carlson D R, Kowligy A, et al. High-harmonic generation in periodically poled waveguides[J]. Optica, 2017, 4(12): 1538-1544. doi: 10.1364/OPTICA.4.001538
    [22] Li Mingxuan, Tang Xiangyu, Wang Huiyong, et al. Efficient generation of Bessel-Gauss attosecond pulse trains via nonadiabatic phase-matched high-order harmonics[J]. Light: Science & Applications, 2025, 14: 181.
    [23] Westerberg S, Redon M, Raab A K, et al. Influence of the laser pulse duration in high-order harmonic generation[J]. APL Photonics, 2025, 10: 096103. doi: 10.1063/5.0272968
    [24] 陈德应, 王玉铨, 夏元钦. 高次谐波产生阿秒极紫外和X光脉冲研究新进展[J]. 强激光与粒子束, 2008, 20(9): 1409-1412

    Chen Deying, Wang Yuquan, Xia Yuanqin. Recent progress of attosecond XUV and X-ray pulses formed by high-harmonic generation[J]. High Power Laser and Particle Beams, 2008, 20(9): 1409-1412
    [25] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994-1997. doi: 10.1103/PhysRevLett.71.1994
    [26] Liu Yaoli, Wang J, Chu H H. Ion-based high-order harmonic generation from water window to keV region with a transverse disruptive pulse for quasi-phase-matching[J]. Optics Express, 2022, 30(2): 1365-1380. doi: 10.1364/OE.447796
    [27] Liu Yaoli, Wang J, Chu H H. Ion-based high-order harmonic generation for 1.6-keV X-ray driven by wavelength 405 nm pulse[C]//Proceedings of the CLEO 2023. 2023.
    [28] 葛佩佩, 李靖, 刘运全. 从脉冲激光到阿秒光源, 从光电效应到阿秒物理——解读2023年度诺贝尔物理学奖[J]. 物理, 2023, 52(12): 807-815 doi: 10.7693/wl20231201

    Ge Peipei, Li Jing, Liu Yunquan. From ultrashort to attosecond light pulses, from the photoelectric effect to attosecond physics——Interpretation of the 2023 Nobel Prize in Physics[J]. Physics, 2023, 52(12): 807-815 doi: 10.7693/wl20231201
    [29] 李逵, 孟润宇, 李睿晅, 等. 基于高次谐波的高功率高稳定13.5 nm极紫外光源[J]. 中国激光, 2024, 51: 0701011 doi: 10.3788/CJL231507

    Li Kui, Meng Runyu, Li Ruixuan, et al. High power and high stability 13.5 nm extreme ultraviolet light source driven by high-order harmonics[J]. Chinese Journal of Lasers, 2024, 51: 0701011 doi: 10.3788/CJL231507
    [30] 高记星, 娄智远, 杨帆, 等. 基于百太瓦级激光系统驱动的高能量13 nm波段高次谐波产生[J]. 光学学报, 2024, 44: 0214001 doi: 10.3788/AOS231482

    Gao Jixing, Lou Zhiyuan, Yang Fan, et al. High-energy high-order harmonic generation around 13 nm wavelength based on hundred-terawatt-level laser system[J]. Acta Optica Sinica, 2024, 44: 0214001 doi: 10.3788/AOS231482
    [31] Goh S J, Bastiaens H J M, Vratzov B, et al. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range[J]. Optics Express, 2015, 23(4): 4421-4434. doi: 10.1364/OE.23.004421
    [32] Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Physical Review Letters, 1992, 68(24): 3535-3538. doi: 10.1103/PhysRevLett.68.3535
    [33] Chan W F, Cooper G, Guo X, et al. Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution. III. The photoabsorption of argon, krypton, and xenon[J]. Physical Review A, 1992, 46(1): 149-171. doi: 10.1103/PhysRevA.46.149
    [34] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3
    [35] Moldosanov K A, Postnikov A V, Lelevkin V M, et al. Terahertz imaging technique for cancer diagnostics using frequency conversion by gold nano-objects[J]. Ferroelectrics, 2017, 509(1): 158-166. doi: 10.1080/00150193.2017.1296344
    [36] Zhang Xicheng, Shkurinov A, Zhang Yan. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1): 16-18. doi: 10.1038/nphoton.2016.249
    [37] Dienst A, Hoffmann M C, Fausti D, et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor[J]. Nature Photonics, 2011, 5(8): 485-488. doi: 10.1038/nphoton.2011.124
    [38] Manceau J M, Loukakos P A, Tzortzakis S. Direct acoustic phonon excitation by intense and ultrashort terahertz pulses[J]. Applied Physics Letters, 2010, 97: 251904. doi: 10.1063/1.3529466
    [39] Liu Mengkun, Hwang H Y, Tao Hu, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 2012, 487(7407): 345-348. doi: 10.1038/nature11231
    [40] Kealhofer C, Schneider W, Ehberger D, et al. All-optical control and metrology of electron pulses[J]. Science, 2016, 352(6284): 429-433. doi: 10.1126/science.aae0003
    [41] E Yiwen, Zhang Liangliang, Tsypkin A, et al. Progress, challenges, and opportunities of terahertz emission from liquids[J]. Journal of the Optical Society of America B, 2022, 39(3): A43-A51. doi: 10.1364/JOSAB.446095
    [42] Li Zhengliang, Bian Xuebin. Terahertz radiation induced by shift currents in liquids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121: e2315297121.
    [43] Rogalski A, Sizov F. Terahertz detectors and focal plane arrays[J]. Opto-Electronics Review, 2011, 19(3): 346-404. doi: 10.1201/b10319-30
    [44] Zhang Mingyu, Ban Dayan, Xu Chao, et al. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber[J]. ACS Nano, 2019, 13(11): 13285-13292. doi: 10.1021/acsnano.9b06332
    [45] Zhuo H B, Zhang S J, Li X H, et al. Terahertz generation from laser-driven ultrafast current propagation along a wire target[J]. Physical Review E, 2017, 95: 013201. doi: 10.1103/PhysRevE.95.013201
    [46] Smith G S. Teaching antenna radiation from a time-domain perspective[J]. American Journal of Physics, 2001, 69(3): 288-300. doi: 10.1119/1.1320439
    [47] Li Zhichao, Zheng Jian. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse[J]. Physics of Plasmas, 2007, 14: 054505. doi: 10.1063/1.2734945
    [48] Li Jitao, Li Jie. Terahertz (THz) generator and detection[J]. Electrical Science & Engineering, 2020, 2(1): 11-25. doi: 10.30564/ese.v2i1.1777
    [49] Kodama R, Sentoku Y, Chen Z L, et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 2004, 432(7020): 1005-1008. doi: 10.1038/nature03133
    [50] Habara H, Adumi K, Yabuuchi T, et al. Surface acceleration of fast electrons with relativistic self-focusing in preformed plasma[J]. Physical Review Letters, 2006, 97: 095004. doi: 10.1103/PhysRevLett.97.095004
    [51] Li Y T, Yuan X H, Xu M H, et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 2006, 96: 165003. doi: 10.1103/PhysRevLett.96.165003
    [52] Tokita S, Otani K, Nishoji T, et al. Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 2011, 106: 255001. doi: 10.1103/PhysRevLett.106.255001
    [53] Nakajima H, Tokita S, Inoue S, et al. Divergence-free transport of laser-produced fast electrons along a meter-long wire target[J]. Physical Review Letters, 2013, 110: 155001. doi: 10.1103/PhysRevLett.110.155001
    [54] Tokita S, Sakabe S, Nagashima T, et al. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses[J]. Scientific Reports, 2015, 5: 8268. doi: 10.1038/srep08268
    [55] Teramoto K, Tokita S, Terao T, et al. Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires[J]. Applied Physics Letters, 2018, 113: 051101. doi: 10.1063/1.5031873
    [56] Tian Ye, Liu Jiansheng, Bai Yafeng, et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 2017, 11(4): 242-246. doi: 10.1038/nphoton.2017.16
    [57] Zhang Dongdong, Zeng Yushan, Bai Yafeng, et al. Coherent surface plasmon polariton amplification via free-electron pumping[J]. Nature, 2022, 611(7934): 55-60. doi: 10.1038/s41586-022-05239-2
    [58] Shao Shuoting, Wang Xiangbing, Huang Rong, et al. Efficiently laser driven terahertz surface plasmon polaritons on long metal wire[J]. Physical Review X, 2025, 15: 031025. doi: 10.1103/mkyj-77k8
    [59] Wang Jianshuo, Zhang Zhijun, Zhou Shiyi, et al. Radiation dynamics and manipulation of extreme terahertz surface wave on a metal wire[J]. Laser & Photonics Reviews, 2025, 19: 2400954. doi: 10.1002/lpor.202400954
    [60] Matlis N H, Plateau G R, van Tilborg J, et al. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation[J]. Journal of the Optical Society of America B, 2011, 28(1): 23-27. doi: 10.1364/JOSAB.28.000023
    [61] Shan Jie, Weling A S, Knoesel E, et al. Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling[J]. Optics Letters, 2000, 25(6): 426-428. doi: 10.1364/OL.25.000426
    [62] Berden G, Jamison S P, Macleod A M, et al. Electro-optic technique with improved time resolution for real-time, nondestructive, single-shot measurements of femtosecond electron bunch profiles[J]. Physical Review Letters, 2004, 93: 114802. doi: 10.1103/PhysRevLett.93.114802
    [63] Kim K Y, Yellampalle B, Taylor A J, et al. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons[J]. Optics Letters, 2007, 32(14): 1968-1970. doi: 10.1364/OL.32.001968
    [64] Sun F G, Jiang Zhiping, Zhang X C. Analysis of terahertz pulse measurement with a chirped probe beam[J]. Applied Physics Letters, 1998, 73(16): 2233-2235. doi: 10.1063/1.121685
    [65] Johnson J A, Brunner F D J, Grübel S, et al. Distortion-free enhancement of terahertz signals measured by electro-optic sampling. II. Experiment[J]. Journal of the Optical Society of America B, 2014, 31(5): 1035-1040. doi: 10.1364/JOSAB.31.001035
    [66] Jackson J D. Classical electrodynamics[M]. New York: Wiley, 1975.
    [67] 陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
    [68] Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
    [69] Aniculaesei C, Ha T, Yoffe S, et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator[J]. Matter and Radiation at Extremes, 2024, 9: 014001. doi: 10.1063/5.0161687
    [70] Picksley A, Stackhouse J, Benedetti C, et al. Matched guiding and controlled injection in dark-current-free, 10-GeV-class, channel-guided laser-plasma accelerators[J]. Physical Review Letters, 2024, 133: 255001. doi: 10.1103/PhysRevLett.133.255001
    [71] Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
    [72] Ke L T, Feng K, Wang W T, et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 2021, 126: 214801. doi: 10.1103/PhysRevLett.126.214801
    [73] Plateau G R, Geddes C G R, Thorn D B, et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy[J]. Physical Review Letters, 2012, 109: 064802. doi: 10.1103/PhysRevLett.109.064802
    [74] Maier A R, Delbos N M, Eichner T, et al. Decoding sources of energy variability in a laser-plasma accelerator[J]. Physical Review X, 2020, 10: 031039.
    [75] Faure J, van der Geer B, Beaurepaire B, et al. Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction[J]. Physical Review Accelerators and Beams, 2016, 19: 021302. doi: 10.1103/PhysRevAccelBeams.19.021302
    [76] Zhang C J, Hua J F, Wan Y, et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch[J]. Physical Review Letters, 2017, 119: 064801. doi: 10.1103/PhysRevLett.119.064801
    [77] Wan Yang, Seemann O, Tata S, et al. Direct observation of relativistic broken plasma waves[J]. Nature Physics, 2022, 18(10): 1186-1190. doi: 10.1038/s41567-022-01717-6
    [78] Wan Yang, Tata S, Seemann O, et al. Real-time visualization of the laser-plasma wakefield dynamics[J]. Science Advances, 2024, 10: eadj3595. doi: 10.1126/sciadv.adj3595
    [79] Ta Phuoc K, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
    [80] Chen L M, Yan W C, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
    [81] Chen Min, Luo Ji, Li Feiyu, et al. Tunable synchrotron-like radiation from centimeter scale plasma channels[J]. Light: Science & Applications, 2016, 5: e16015.
    [82] Yan Wenchao, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. doi: 10.1038/nphoton.2017.100
    [83] Yu Changhai, Liu Jiansheng, Wang Wentao, et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front[J]. Applied Physics Letters, 2018, 112: 133503. doi: 10.1063/1.5019406
    [84] Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061. doi: 10.1103/physrevx.10.011061
    [85] Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6: eaaz7240. doi: 10.1126/sciadv.aaz7240
    [86] Peng H, Huang T W, Jiang K, et al. Coherent subcycle optical shock from a superluminal plasma wake[J]. Physical Review Letters, 2023, 131: 145003. doi: 10.1103/PhysRevLett.131.145003
    [87] Ma Yue, Hua Jianfei, Liu Dexiang, et al. Compact polarized X-ray source based on all-optical inverse compton scattering[J]. Physical Review Applied, 2023, 19: 014073. doi: 10.1103/PhysRevApplied.19.014073
    [88] Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
    [89] Yu Changhai, Qin Zhiyong, Zhang Zhijun, et al. Laser wakefield electron acceleration and novel radiation sources (invited)[J]. Chinese Journal of Lasers, 2024, 51: 0101002. doi: 10.3788/CJL231403
    [90] Guénot D, Gustas D, Vernier A, et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nature Photonics, 2017, 11(5): 293-296. doi: 10.1038/nphoton.2017.46
    [91] Rovige L, Huijts J, Andriyash I, et al. Demonstration of stable long-term operation of a kilohertz laser-plasma accelerator[J]. Physical Review Accelerators and Beams, 2020, 23: 093401. doi: 10.1103/PhysRevAccelBeams.23.093401
    [92] Salehi F, Le M, Railing L, et al. Laser-accelerated, low-divergence 15-MeV quasimonoenergetic electron bunches at 1 kHz[J]. Physical Review X, 2021, 11: 021055. doi: 10.1103/physrevx.11.021055
    [93] Huijts J, Rovige L, Andriyash I A, et al. Waveform control of relativistic electron dynamics in laser-plasma acceleration[J]. Physical Review X, 2022, 12: 011036. doi: 10.1070/qe2016v046n01abeh015944
    [94] Bohlen S, Wood J C, Brümmer T, et al. Stability of ionization-injection-based laser-plasma accelerators[J]. Physical Review Accelerators and Beams, 2022, 25: 031301. doi: 10.1103/PhysRevAccelBeams.25.031301
    [95] 谢波, 张晓辉, 李天月, 等. 拍瓦飞秒激光与近临界密度等离子体相互作用的电子加速及betatron辐射产生数值模拟[J]. 强激光与粒子束, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033

    Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033
    [96] Xiang Zhongtao, Yu Changhai, Qin Zhiyong, et al. Ultrahigh-brightness 50 MeV electron beam generation from laser wakefield acceleration in a weakly nonlinear regime[J]. Matter and Radiation at Extremes, 2024, 9: 035201. doi: 10.1063/5.0189460
    [97] Yu Changhai, Qin Zhiyong, Xiang Zhongtao, et al. Sub-per-mille bunch energy spread in a quasi-linear laser-wakefield accelerator via periodical de-chirpings[J]. Communications Physics, 2025, 8: 137. doi: 10.1038/s42005-025-02057-6
  • 加载中
图(18)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-30
  • 修回日期:  2025-12-25
  • 录用日期:  2025-12-10
  • 网络出版日期:  2026-01-16

目录

    /

    返回文章
    返回