留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

郑州大学超短超强激光平台建设及研究进展

万阳 李传可 彭波 宋怀航 鲁巍 MalkaVictor

万阳, 李传可, 彭波, 等. 郑州大学超短超强激光平台建设及研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250412
引用本文: 万阳, 李传可, 彭波, 等. 郑州大学超短超强激光平台建设及研究进展[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.250412
Wan Yang, Li Chuanke, Peng Bo, et al. Ultrafast and ultraintense laser facility at Zhengzhou University: Recent progress[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250412
Citation: Wan Yang, Li Chuanke, Peng Bo, et al. Ultrafast and ultraintense laser facility at Zhengzhou University: Recent progress[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.250412

郑州大学超短超强激光平台建设及研究进展

doi: 10.11884/HPLPB202638.250412
基金项目: 国家自然科学基金项目(12447120、12574380); 中国科学院战略性先导科技专项(XDB0530000); 河南省自然科学基金项目(252300421300)
详细信息
    作者简介:

    万 阳,yangwan23@zzu.edu.cn

    李传可,chuankeli@zzu.edu.cn

  • 中图分类号: O53

Ultrafast and ultraintense laser facility at Zhengzhou University: Recent progress

  • 摘要: 超短超强激光的出现与迅猛发展,为人类创造了前所未有的极端物理条件和全新实验手段,极大深化和拓展了人类对客观世界规律的认识,显著推动了基础与前沿交叉学科以及战略高技术领域的创新发展。基于超短超强激光与等离子体相互作用的粒子加速技术作为新一代加速器与射线源技术,可将传统加速器装置规模缩小百倍,极大提升了高端加速器与射线源在工业、国防、医疗及科研等领域的适用性,在大型关键装备精细探伤、超低剂量超高精度肿瘤诊断、新型低损伤放疗技术、桌面型超快光源等诸多方向展现出广阔的应用前景。本文介绍的郑州大学超短超强激光平台,正是基于该技术建设的新一代先进激光加速器研究与应用装置。此外,本文还系统综述了郑州大学近年来在强场物理与先进加速研究方面取得的重要进展。
  • 图  1  中原之光效果图和中原之光束线图

    Figure  1.  Layout and beam-line of Zhongyuan Light

    图  2  重频1 HZ PW超短超强激光及激光加速研究系统整体布局图

    Figure  2.  Layout of repetition rate 1 Hz PW ultrashort and ultraintense laser and laser acceleration system

    图  3  实验装置图

    Figure  3.  Experimental setup

    图  4  两种方案下200次连续发次的质子实验结果

    Figure  4.  Consecutive proton results for 200 shots for the two setups

    .

    图  5  等离子体尾场的演化过程

    Figure  5.  The evolution of plasma wakefield

    图  6  基于激光加速器的超高能电子放疗原型机

    Figure  6.  The LWFA-based VHEE therapy prototype

    图  7  受照射小鼠的肿瘤控制情况

    Figure  7.  Tumor control in the irradiated mice

    图  8  负能态电子的跃迁几率

    Figure  8.  The transition probability for electron of negative state

  • [1] Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers[J]. Science, 1994, 264(5161): 917-924. doi: 10.1126/science.264.5161.917
    [2] 李儒新, 冷雨欣, 徐至展. 超强超短激光及其应用新进展[J]. 物理, 2015, 44(8): 509-517 doi: 10.7693/wl20150804

    Li Ruxin, Leng Yuxin, Xu Zhizhan. Progress in superintense ultrafast lasers and their applications[J]. Physics, 2015, 44(8): 509-517 doi: 10.7693/wl20150804
    [3] Kiriyama H, Mori M, Pirozhkov A S, et al. High-contrast, high-intensity petawatt-class laser and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 1601118.
    [4] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [5] Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [6] Botner O, Ingelman G, Irbäck A, et al. The Nobel committee for physics[Z]. The Nobel Prize in Physics 2018: Popular Science Background, 2018: 1-7.
    [7] Mourou G A, Korn G, Sandner W, et al. ELI white book: science and technology with ultra-intense lasers[R]. Berlin: THOSS Media GmbH, 2011.
    [8] Hernandez-Gomez C. Overview of the central laser facility (CLF)[R]. Didcot: CLF, 2016-2017: 6-8.
    [9] Papadopoulos D N, Zou J P, Le Blanc C, et al. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 2016, 4: e34. doi: 10.1017/hpl.2016.34
    [10] Khazanov E, Shaykin A, Kostyukov I, et al. eXawatt center for extreme light studies[J]. High Power Laser Science and Engineering, 2023, 11: e78. doi: 10.1017/hpl.2023.69
    [11] Bromage J, Bahk S W, Bedzyk M, et al. MTW-OPAL: a technology development platform for ultra-intense optical parametric chirped-pulse amplification systems[J]. High Power Laser Science and Engineering, 2021, 9: e63. doi: 10.1017/hpl.2021.45
    [12] . http://sulf.siom.ac.cn/.
    [13] 上海超强超短激光实验装置研制进展——专访中国科学院上海光学精密机械研究所李儒新院士[J]. 强激光与粒子束, 2020, 32: 011002

    Development progress of Shanghai superintense ultrafast lasers facility[J]. High Power Laser and Particle Beams, 2020, 32: 011002
    [14] Li Hongyang, Liu Keyang, Wang Xinliang, et al. Timing fluctuation correction for the front end of a 100-PW laser[J]. High Power Laser Science and Engineering, 2023, 11: e52. doi: 10.1017/hpl.2023.41
    [15] 彭宇杰, 许毅, 於亮红, 等. 上海超强超短激光实验装置研制进展[J]. 中国激光, 2024, 51: 1101002

    Peng Yujie, Xu Yi, Yu Lianghong, et al. Review on development of shanghai super-intense ultra-fast laser facility[J]. Chinese Journal of Lasers, 2024, 51: 1101002
    [16] 陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32: 092001

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001
    [17] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [18] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [19] Malka V, Faure J, Gauduel Y, et al. Principles and applications of compact laser–plasma accelerators[J]. Nature Physics, 2008, 4(6): 447-453. doi: 10.1038/nphys966
    [20] Rousse A, Ta Phuoc K, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 2004, 93: 135005. doi: 10.1103/PhysRevLett.93.135005
    [21] Kneip S, McGuey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 2010, 6(12): 980-983. doi: 10.1038/nphys1789
    [22] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond x rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [23] 谢波, 张晓辉, 李天月, 等. 拍瓦飞秒激光与近临界密度等离子体相互作用的电子加速及betatron辐射产生数值模拟[J]. 强激光与粒子束, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033

    Xie Bo, Zhang Xiaohui, Li Tianyue, et al. Numerical study of electron acceleration and betatron radiation based on interaction of petawatt femtosecond laser with near-critical-density plasma[J]. High Power Laser and Particle Beams, 2025, 37: 091002 doi: 10.11884/HPLPB202537.250033
    [24] Ta Phuoc K, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
    [25] Liu Cheng, Golovin G, Chen Shouyuan, et al. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light[J]. Optics Letters, 2014, 39(14): 4132-4135. doi: 10.1364/OL.39.004132
    [26] 杜应超, 陈寒, 张鸿泽, 等. 紧凑型单能伽马射线源[J]. 强激光与粒子束, 2022, 34: 104010 doi: 10.11884/HPLPB202234.220132

    Du Yingchao, Chen Han, Zhang Hongze, et al. A very compact inverse Compton scattering gamma-ray source[J]. High Power Laser and Particle Beams, 2022, 34: 104010 doi: 10.11884/HPLPB202234.220132
    [27] Nakajima K. Towards a table-top free-electron laser[J]. Nature Physics, 2008, 4(2): 92-93. doi: 10.1038/nphys846
    [28] Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
    [29] Pompili R, Alesini D, Anania M P, et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator[J]. Nature, 2022, 605(7911): 659-662. doi: 10.1038/s41586-022-04589-1
    [30] Labat M, Cabadağ J C, Ghaith A, et al. Seeded free-electron laser driven by a compact laser plasma accelerator[J]. Nature Photonics, 2023, 17(2): 150-156. doi: 10.1038/s41566-022-01104-w
    [31] Schroeder C B, Esarey E, Geddes C G R, et al. Physics considerations for laser-plasma linear colliders[J]. Physical Review Accelerators and Beams, 2010, 13: 101301. doi: 10.1103/PhysRevSTAB.13.101301
    [32] USDOE Office of Science. Advanced accelerator development strategy report: DOE advanced accelerator concepts research roadmap workshop[R]. USDOE Office of Science, 2016.
    [33] European Strategy Group. 2020 Update of the European strategy for particle physics[R]. Geneva: CERN Council, 2020.
    [34] Assmann R W, Weikum M K, Akhter T, et al. EuPRAXIA conceptual design report[J]. The European Physical Journal Special Topics, 2020, 229(24): 3675-4284. doi: 10.1140/epjst/e2020-000127-8
    [35] Seemann O, Wan Yang, Tata S, et al. Laser proton acceleration from a near-critical imploding gas target[J]. Physical Review Letters, 2024, 133: 025001. doi: 10.1103/PhysRevLett.133.025001
    [36] Wan Y, Andriyash I A, Hua J F, et al. Two-stage laser acceleration of high quality protons using a tailored density plasma[J]. Physical Review Accelerators and Beams, 2019, 22: 021301. doi: 10.1103/PhysRevAccelBeams.22.021301
    [37] Wan Yang, Tata S, Seemann O, et al. Real-time visualization of the laser-plasma wakefield dynamics[J]. Science Advances, 2024, 10: eadj3595. doi: 10.1126/sciadv.adj3595
    [38] Guo Zhiyuan, Liu Shuang, Zhou Bing, et al. Preclinical tumor control with a laser-accelerated high-energy electron radiotherapy prototype[J]. Nature Communications, 2025, 16: 1895. doi: 10.1038/s41467-025-57122-z
    [39] Li C K, Zhou X X, Chen Q, et al. Transition signatures for electron-positron pair creation in space-time inhomogeneous electric field[J]. arXiv preprint arXiv:, 2408, 09402: 2024.
  • 加载中
图(8)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-19
  • 修回日期:  2025-12-16
  • 录用日期:  2025-12-10
  • 网络出版日期:  2025-12-26

目录

    /

    返回文章
    返回