Generation and applications of ultra-short and ultra-intense mid-infrared pulses from laser wakefields
-
摘要: 超短超强中红外激光脉冲在强场物理、超快化学、环境监测、生物医疗等领域有独特应用价值,尤其在强场物理研究领域中,超短超强中红外光为开拓超强激光与物质相互作用的新物理提供了不同于以往近红外波段的波长新尺度。然而受限于传统激光晶体及非线性晶体损伤阈值,长期以来产生大能量近单周期中红外光源始终是超快激光技术领域的重要挑战。近年来,利用等离子体作为非线性光学介质,基于激光尾场的等离子体光子减速过程产生超短超强中红外脉冲成为激光等离子体领域的研究新方向。本文围绕等离子体光子减速这一物理机制,系统介绍其基本原理、数值模拟及实验研究进展以及未来的应用前景。Abstract: Ultra-short and ultra-intense mid-infrared laser pulses hold unique application value in fields such as strong-field physics, ultrafast chemistry, environmental monitoring, and biomedical applications. Particularly in strong-field physics research, ultra-short and ultra-intense mid-infrared pulses provide a new wavelength scale distinct from the conventional near-infrared range, enabling the exploration of novel physics in the interaction between ultra-intense lasers and matter. However, due to the damage thresholds of traditional laser crystals and nonlinear crystals, the generation of high-energy, single-cycle mid-infrared light sources has long remained a significant challenge in ultrafast laser technology. In recent years, utilizing plasma as a nonlinear optical medium, the generation of ultra-short and ultra-intense mid-infrared pulses through photon deceleration process based on laser wakes has emerged as a new research direction in laser-plasma physics. This paper systematically reviews the fundamental principles, numerical simulations, experimental progress, and future application prospects surrounding this physical mechanism of plasma photon deceleration.
-
图 2 基于“先低后高”等离子体结构的单周期中红外脉冲产生。(a) 等离子体结构密度分布。(b) 驱动激光脉宽及峰值
$ {a}_{0} $ 随传输距离的演化。(c) 光谱随传输距离的演化。(d)初始光谱与最终光谱对比。插图显示了滤波后的红外脉冲(阴影区域)电场的时间变化。[48]Figure 2. The structure and output of the LWIR source. a, The density profile of the plasma structure. b, The pulse duration and peak
$ {a}_{0} $ evolution with propagation distance in the plasma. c, The spectral evolution with the propagation distance in the plasma. d, The spectra of the laser pulse entering (blue dashed line) and exiting (red solid line) the plasma structure and the LWIR pulse (shaded region) that resides within the wake cavity. The inset shows the temporal variation of the electric field of the long-wavelength portion (shaded region) of the infrared pulse. [48]图 3 利用等离子体光调制器产生中红外脉冲的机制示意图:其中驱动光首先激发非线性等离子体尾流,同时共同传播的信号脉冲被注入到尾流的第二个尾场中。经过足够长的调制时间后,信号脉冲的频率急剧下移并转换为中红外脉冲,a为原理图,b为3D-PIC模拟结果。[49]
Figure 3. This concept involves two laser pulses in an underdense plasma where a drive laser pulse first excites a nonlinear plasma wake while a co-propagating signal pulse is injected into the second bubble of the wake. After a sufficient modulation time, the signal pulse is dramatically frequency-downshifted and converted into a mid-IR pulse, as seen in (a schematic diagram) and (b 3D simulation result). [49]
图 4 光子减速产生强中红外旋涡脉冲的示意图。(a) 当强激光脉冲在低密度等离子体通道中传播时,形成气泡状结构的等离子体尾波;(b)经过2 mm的传播后,驱动激光脉冲经历显著频率下移,产生强中红外少周期旋涡脉冲;(c)等离子体通道的密度分布,Lp和Lf分别表示密度平台区和下降坡的纵向长度[52]
Figure 4. Schematic of the plasma photon decelerator for producing intense mid-IR vortex pulses. (a) A plasma wake with a bubblelike shape is created during the propagation of an intense laser pulse in an underdense plasma channel. (b) An intense mid-IR few-cycle pulse is generated inside the bubble, behind the drive laser pulse, after a propagation distance of 2 mm, when it undergoes a strong frequency downshift. (c) The density distribution of the plasma channel. Lp and Lf represent the longitudinal lengths of the density plateau and down ramp, respectively. [52]
图 5 亚焦耳级、太瓦级单周期太赫兹脉冲产生的Quasi-3D OSIRIS 模拟结果。a, 特殊设计的密度分布。b和c, 在不同传播距离处的脉宽和频谱演化. d, 最终光谱以及滤波后的THz光谱. e, 滤波后的单周期 THz 脉冲[54]
Figure 5. Quasi-3D OSIRIS simulation results on the generation of sub-joule, terawatts, single-cycle THz pulses. a, The tailored plasma density profile. b and c, Evolution of pulse duration and spectrum with propagation distance in the plasma. d, Final spectrum and filtered single-cycle THz spectrum. e, The filtered single-cycle THz pulse.[54]
图 6 电子束辅助光子减速过程的示意图。一束外源注入的电子束与激光脉冲在等离子体中共同传播,用以降低非线性尾波场中的残余电子密度。[57]
Figure 6. A schematic diagram illustrating the electron beam-assisted photon deceleration. An externally introduced electron beam co-propagates with the laser pulse into the plasma, reducing the residual plasma electron density inside the nonlinear plasma wake.[57]
图 8 密度分布、实验布局和XFROG结果。(a) 叶片遮挡不同气体喷流宽度下测得的等离子体密度分布。(b)实验光路示意图。(c) –(e)为(a) 叶片遮挡不同气体喷流宽度下所测量的XFROG行迹图[55]
Figure 8. Density profiles, experimental setup, and XFROG results. (a) The measured on-axis plasma densities. (b) Schematic of the experimental setup. (c)–(e) The measured XFROG traces for the corresponding plasma density profiles shown in (a)[55]
表 1 各种超短超强中红外光源代表性参数
Table 1. Representative parameters of various ultra-short ultra-strong mid-infrared light sources
wavelength/μm ultrashort mid-infrared light source central wavelength/µm energy/mJ pulse width/fs peak power/GW <5 OPCPA[9] 3.9 >20 93 > 200 DC-OPA[18] 2.44 53 8.6 6 000 FOPA[20] 1.8 30 11.6 2 500 Cr2+:ZnSe laser[21] 2.4 7/6.2 101/39 ~/115 Fe:ZnSe laser[22] 4.4 3.5 150 > 20 >5 CO2 laser[23] ~10 45 000 3 000 15 000 CO2 laser[27] 9.2 1300 675 1 600 DFG[31] 9 0.21 91 2.3 表 2 近年来利用中红外光产生高次谐波实验结果。
Table 2. Recent experimental results on high-order harmonic generation using mid-infrared light
author (year) cutoff
energy/eVgas drive laser
wavelength/μmdrive laser
pulse width/fsdrive laser
energy/mJdrive laser repetition
rate/HzB. Shan, et al (2001)[68] 160 Ar 1.51 25 0.10 1 000 T. Popmintchev, et al (2009)[69] 330 He 1.30 35 5.50 10 H. Xiong, et al (2009)[70] 400 Ne 1.50 50 1.60 1 N. Ishi, et al (2014)[71] 320 Ne 1.60 9 0.55 1 E. J. Takahashi, et al (2008)[72] 300 (450) Ne (He) 1.60 35 2.20(4.50) 10 A. S. Johnson, et al (2016)[73] 375 Ne 1.80 8 0.70 1 000 S. M. Teichmann, et al (2016)[74] 350 (500) Ne (He) 1.85 12 0.40 1 000 M.-C. Chen, et al (2010)[75] 395 (520) Ne (He) 2.00 40 2.40 10 G. J. Stein, et al (2016)[76] 450 Ne 2.10 32 1.35 1 000 T. Popmintchev, et al (2012)[1] 1600 He 3.90 80 10.00 20 J. Gao, et al (2022)[77] 5200 Kr ions 1.45 60 7.50 20 表 3 近年来阿秒脉冲世界纪录。
Table 3. Recent attosecond-pulse world records
author (year) X-ray pulse width/as central energy/eV drive laser wavelength/nm pulse width/fs energy/ mJ G. Sansone, et al (2006)[79] 130 36 750 5 0.22 E. Goulielmakis, et al (2008)[80] 80 82 720 3.3 0.3 K. Zhao, et al (2012)[81] 67 90 750 7 1.4 J. Li, et al (2017)[82] 53 170 1700 12 1.5 T. Gaumnitz, et al (2017)[83] 43 110 1800 11.1 0.48 Ardana-Lamas F, et al (2025)[84] 19 243 1850 12 0.4 -
[1] Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291. doi: 10.1126/science.1218497 [2] Ghimire S, DiChiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2): 138-141. doi: 10.1038/nphys1847 [3] Blaga C I, Xu Junliang, DiChiara A D, et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature, 2012, 483(7388): 194-197. doi: 10.1038/nature10820 [4] Meckel M, Comtois D, Zeidler D, et al. Laser-induced electron tunneling and diffraction[J]. Science, 2008, 320(5882): 1478-1482. doi: 10.1126/science.1157980 [5] Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349 [6] Petersen C R, Møller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834. doi: 10.1038/nphoton.2014.213 [7] Auston D H, Cheung K P. Coherent time-domain far-infrared spectroscopy[J]. Journal of the Optical Society of America B, 1985, 2(4): 606-612. doi: 10.1364/JOSAB.2.000606 [8] Matsubara E, Nagai M, Ashida M. Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses[J]. Journal of the Optical Society of America B, 2013, 30(6): 1627-1630. doi: 10.1364/JOSAB.30.001627 [9] Mitrofanov A V, Voronin A A, Sidorov-Biryukov D A, et al. Mid-infrared laser filaments in the atmosphere[J]. Scientific Reports, 2015, 5: 8368. doi: 10.1038/srep08368 [10] Sanchez D, Hemmer M, Baudisch M, et al. 7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm[J]. Optica, 2016, 3(2): 147-150. doi: 10.1364/OPTICA.3.000147 [11] Von Grafenstein L, Bock M, Ueberschaer D, et al. 5 μm few-cycle pulses with multi-Gigawatt peak power at a 1 kHz repetition rate[J]. Optics Letters, 2017, 42(19): 3796-3799. doi: 10.1364/OL.42.003796 [12] Elu U, Steinle T, Sánchez D, et al. Table-top high-energy 7 μm OPCPA and 260 mJ Ho: YLF pump laser[J]. Optics Letters, 2019, 44(13): 3194-3197. doi: 10.1364/OL.44.003194 [13] Walke D, Koç A, Gores F, et al. High-average-power, few-cycle, 2.1 µm OPCPA laser driver for soft-X-ray high-harmonic generation[J]. Optics Express, 2025, 33(5): 10006-10019. doi: 10.1364/OE.547689 [14] Zhang Qingbin, Takahashi E J, Mücke O D, et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses[J]. Optics Express, 2011, 19(8): 7190-7212. doi: 10.1364/OE.19.007190 [15] Fu Yuxi, Xue Bing, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification[J]. Applied Physics Letters, 2018, 112: 241105. doi: 10.1063/1.5038414 [16] Xu Lu, Nishimura K, Suda A, et al. Optimization of a multi-TW few-cycle 1.7-µm source based on Type-I BBO dual-chirped optical parametric amplification[J]. Optics Express, 2020, 28(10): 15138-15147. doi: 10.1364/OE.392045 [17] Xu Lu, Xue Bing, Ishii N, et al. 100-mJ class, sub-two-cycle, carrier-envelope phase-stable dual-chirped optical parametric amplification[J]. Optics Letters, 2022, 47(13): 3371-3374. doi: 10.1364/OL.455811 [18] Xu Lu, Takahashi E J. Dual-chirped optical parametric amplification of high-energy single-cycle laser pulses[J]. Nature Photonics, 2024, 18(1): 99-106. doi: 10.1038/s41566-023-01331-9 [19] Schmidt B E, Thiré N, Boivin M, et al. Frequency domain optical parametric amplification[J]. Nature Communications, 2014, 5: 3643. doi: 10.1038/ncomms4643 [20] Gruson V, Ernotte G, Lassonde P, et al. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification[J]. Optics Express, 2017, 25(22): 27706-27714. doi: 10.1364/OE.25.027706 [21] Leshchenko V E, Talbert B K, Lai Yuhang, et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft x-ray physics[J]. Optica, 2020, 7(8): 981-988. doi: 10.1364/OPTICA.393377 [22] Migal E, Pushkin A, Bravy B, et al. 3.5-mJ 150-fs Fe: ZnSe hybrid mid-IR femtosecond laser at 4.4 μm for driving extreme nonlinear optics[J]. Optics Letters, 2019, 44(10): 2550-2553. doi: 10.1364/OL.44.002550 [23] Haberberger D, Tochitsky S, Joshi C. Fifteen terawatt picosecond CO2 laser system[J]. Optics Express, 2010, 18(17): 17865-17875. doi: 10.1364/OE.18.017865 [24] Tovey D, Tochitsky S Y, Pigeon J J, et al. Multi-atmosphere picosecond CO2 amplifier optically pumped at 4.3 μm[J]. Applied Optics, 2019, 58(21): 5756-5763. [25] Polyanskiy M N, Pogorelsky I V, Babzien M, et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2 amplifiers[J]. OSA Continuum, 2020, 3(3): 459-472. doi: 10.1364/OSAC.381467 [26] Panagiotopoulos P, Hastings M G, Kolesik M, et al. Multi-terawatt femtosecond 10 µm laser pulses by self-compression in a CO2 cell[J]. OSA Continuum, 2020, 3(11): 3040-3047. doi: 10.1364/OSAC.399992 [27] Pogorelsky I V, Polyanskiy M N, Babzien M, et al. Terawatt-class femtosecond long-wave infrared laser[J]. Frontiers in Physics, 2024, 12: 1390225. doi: 10.3389/fphy.2024.1390225 [28] Pupeza I, Sánchez D, Zhang Jinwei, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721-724. doi: 10.1038/nphoton.2015.179 [29] Krogen P, Suchowski H, Liang Houkun, et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses[J]. Nature Photonics, 2017, 11(4): 222-226. doi: 10.1038/nphoton.2017.34 [30] Novák O, Krogen P R, Kroh T, et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 2018, 43(6): 1335-1338. doi: 10.1364/OL.43.001335 [31] Gu Xingbin, Ding Yufang, Hu Zhixuan, et al. Difference-frequency generation of 0.2-mJ 3-cycle 9-µm pulses from two 1-kHz multicycle OPCPAs[J]. Laser & Photonics Reviews, 2025, 19: 2400507. [32] Fuji T, Suzuki T. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air[J]. Optics Letters, 2007, 32(22): 3330-3332. doi: 10.1364/ol.32.003330 [33] Théberge F, Châteauneuf M, Roy G, et al. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation[J]. Physical Review A, 2010, 81: 033821. doi: 10.1103/PhysRevA.81.033821 [34] Nomura Y, Shirai H, Ishii K, et al. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases[J]. Optics Express, 2012, 20(22): 24741-24747. doi: 10.1364/OE.20.024741 [35] Fuji T, Nomura Y, Shirai H. Generation and characterization of phase-stable sub-single-cycle pulses at 3000 cm−1[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21: 8700612. [36] Huang Weihong, Zhao Yue, Kusama S, et al. Generation of sub-half-cycle 10 µm pulses through filamentation at kilohertz repetition rates[J]. Optics Express, 2020, 28(24): 36527-36543. doi: 10.1364/OE.408342 [37] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267 [38] Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002 [39] Wilks S C, Dawson J M, Mori W B, et al. Photon accelerator[J]. Physical Review Letters, 1989, 62(22): 2600-2603. doi: 10.1103/PhysRevLett.62.2600 [40] Sprangle P, Esarey E, Ting A. Nonlinear theory of intense laser-plasma interactions[J]. Physical Review Letters, 1990, 64(17): 2011-2014. doi: 10.1103/PhysRevLett.64.2011 [41] Sprangle P, Esarey E, Ting A. Nonlinear interaction of intense laser pulses in plasmas[J]. Physical Review A, 1990, 41(8): 4463-4469. doi: 10.1103/PhysRevA.41.4463 [42] Esarey E, Ting A, Sprangle P. Frequency shifts induced in laser pulses by plasma waves[J]. Physical Review A, 1990, 42(6): 3526-3531. doi: 10.1103/PhysRevA.42.3526 [43] Bulanov S V, Inovenkov I N, Kirsanov V I, et al. Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma[J]. Physics of Fluids B: Plasma Physics, 1992, 4(7): 1935-1942. doi: 10.1063/1.860046 [44] Tsung F S, Ren C, Silva L O, et al. Generation of ultra-intense single-cycle laser pulses by using photon deceleration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 29-32. doi: 10.1073/pnas.262543899 [45] Gordon D F, Hafizi B, Hubbard R F, et al. Asymmetric self-phase modulation and compression of short laser pulses in plasma channels[J]. Physical Review Letters, 2003, 90: 215001. doi: 10.1103/PhysRevLett.90.215001 [46] Shadwick B A, Schroeder C B, Esarey E. Nonlinear laser energy depletion in laser-plasma accelerators[J]. Physics of Plasmas, 2009, 16: 056704. doi: 10.1063/1.3124185 [47] Zhu W, Palastro J P, Antonsen T M. Pulsed mid-infrared radiation from spectral broadening in laser wakefield simulations[J]. Physics of Plasmas, 2013, 20: 073103. doi: 10.1063/1.4813245 [48] Nie Zan, Pai C H, Hua Jianfei, et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure[J]. Nature Photonics, 2018, 12(8): 489-494. doi: 10.1038/s41566-018-0190-8 [49] Zhu Xinglong, Weng Suming, Chen Min, et al. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas[J]. Light: Science & Applications, 2020, 9: 46. [50] Zhu Xinglong, Liu Weiyuan, Weng Suming, et al. Generation of single-cycle relativistic infrared pulses at wavelengths above 20 µm from density-tailored plasmas[J]. Matter and Radiation at Extremes, 2022, 7: 014403. doi: 10.1063/5.0068265 [51] 何运孝, 基于等离子体尾场的超短超强激光操控研究[D]. 北京: 清华大学, 2023He Yunxiao. Research on ultra-short ultra-intense laser manipulation based on plasma wakefield[D]. Beijing: Tsinghua University, 2023 [52] Zhu Xinglong, Chen Min, Weng Suming, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 µm[J]. Physical Review Applied, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024 [53] Li Dongao, Zhang Guobo, Cao Yue, et al. Generation of relativistic few-cycle radially polarized mid-infrared pulse in plasma channel[J]. Physics Letters A, 2025, 540: 130399. doi: 10.1016/j.physleta.2025.130399 [54] Nie Zan, Wu Yipeng, Zhang Chaojie, et al. Ultra-short pulse generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts[J]. Physics of Plasmas, 2021, 28: 023106. doi: 10.1063/5.0039301 [55] Nie Zan, Pai C H, Zhang Jie, et al. Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses[J]. Nature Communications, 2020, 11: 2787. doi: 10.1038/s41467-020-16541-w [56] Lu Huangang, Liu Jiaxin, Cai Jie, et al. Generation of multi-cycle relativistic terahertz radiation from photon deceleration in a long self-induced plasma wake[J]. Physics of Plasmas, 2025, 32: 023104. doi: 10.1063/5.0241144 [57] Lu Huangang, Ma Qianyi, Xia Yuhui, et al. Enhanced photon deceleration in an electron beam-assisted laser wakefield accelerator[J]. Physics of Plasmas, 2025, 32: 073110. doi: 10.1063/5.0275067 [58] Faure J, Glinec Y, Santos J J, et al. Observation of laser-pulse shortening in nonlinear plasma waves[J]. Physical Review Letters, 2005, 95: 205003. doi: 10.1103/PhysRevLett.95.205003 [59] Schreiber J, Bellei C, Mangles S P D, et al. Complete temporal characterization of asymmetric pulse compression in a laser wakefield[J]. Physical Review Letters, 2010, 105: 235003. doi: 10.1103/PhysRevLett.105.235003 [60] Streeter M J V, Kneip S, Bloom M S, et al. Observation of laser power amplification in a self-injecting laser wakefield accelerator[J]. Physical Review Letters, 2018, 120: 254801. doi: 10.1103/PhysRevLett.120.254801 [61] Pai C H, Chang Y Y, Ha L C, et al. Generation of intense ultrashort midinfrared pulses by laser-plasma interaction in the bubble regime[J]. Physical Review A, 2010, 82: 063804. doi: 10.1103/PhysRevA.82.063804 [62] Schmid K, Buck A, Sears C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 091301. doi: 10.1103/PhysRevSTAB.13.091301 [63] Gonsalves A J, Nakamura K, Lin Chen, et al. Tunable laser plasma accelerator based on longitudinal density tailoring[J]. Nature Physics, 2011, 7(11): 862-866. doi: 10.1038/nphys2071 [64] Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110: 185006. doi: 10.1103/PhysRevLett.110.185006 [65] Hung T S, Yang C H, Wang J, et al. A 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction[J]. Applied Physics B, 2014, 117(4): 1189-1200. doi: 10.1007/s00340-014-5943-6 [66] 何运孝, 华剑飞, 张杰, 等. 基于拍瓦激光与等离子体作用的超强中红外脉冲产生[C]//第九届高能量密度物理青年科学家论坛. 2023: HEDP 2023-171He Yunxiao, Hua Jianfei, Zhang Jie, et al. Ultra-intense mid-infrared pulse generation based on the interaction between petawatt laser and plasma[C]//The 9th Young Scientists Forum on High Energy Density Physics. 2023: HEDP 2023-171 [67] Wolter B, Pullen M G, Baudisch M, et al. Strong-field physics with mid-IR fields[J]. Physical Review X, 2015, 5: 021034. [68] Shan Bing, Chang Zenghu. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field[J]. Physical Review A, 2001, 65: 011804(R). [69] Popmintchev T, Chen M C, Bahabad A, et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26): 10516-10521. doi: 10.1364/nlo.2009.nthc3 [70] Xiong Hui, Xu Han, Fu Yuxi, et al. Generation of a coherent x ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source[J]. Optics Letters, 2009, 34(11): 1747-1749. doi: 10.1364/OL.34.001747 [71] Ishii N, Kaneshima K, Kitano K, et al. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses[J]. Nature Communications, 2014, 5: 3331. doi: 10.1038/ncomms4331 [72] Takahashi E J, Kanai T, Ishikawa K L, et al. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media[J]. Physical Review Letters, 2008, 101: 253901. doi: 10.1103/PhysRevLett.101.253901 [73] Johnson A S, Miseikis L, Wood D A, et al. Measurement of sulfur L2, 3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum[J]. Structural Dynamics, 2016, 3: 062603. doi: 10.1063/1.4964821 [74] Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493 [75] Chen M C, Arpin P, Popmintchev T, et al. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source[J]. Physical Review Letters, 2010, 105: 173901. doi: 10.1103/PhysRevLett.105.173901 [76] Stein G J, Keathley P D, Krogen P, et al. Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49: 155601. doi: 10.1088/0953-4075/49/15/155601 [77] Gao Jixing, Wu Jiaqi, Lou Zhiyuan, et al. High-order harmonic generation in an x-ray range from laser-induced multivalent ions of noble gas[J]. Optica, 2022, 9(9): 1003-1008. doi: 10.1364/OPTICA.456481 [78] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000 [79] Sansone G, Benedetti E, Calegari F, et al. Isolated Single-cycle attosecond pulses[J]. Science, 2006, 314(5798): 443-446. doi: 10.1126/science.1132838 [80] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. doi: 10.1126/science.1157846 [81] Zhao Kun, Zhang Qi, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 2012, 37(18): 3891-3893. doi: 10.1364/OL.37.003891 [82] Li Jie, Ren Xiaoming, Yin Yanchun, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8: 186. doi: 10.1038/s41467-017-00321-0 [83] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518. doi: 10.1364/OE.25.027506 [84] Ardana-Lamas F, Cousin S L, Lignieres J, et al. Brilliant source of 19.2-attosecond soft X-ray pulses below the atomic unit of time[J]. Ultrafast Science, 2025, 5: 0128. doi: 10.34133/ultrafastscience.0128 [85] Doumy G, Wheeler J, Roedig C, et al. Attosecond synchronization of high-order harmonics from midinfrared drivers[J]. Physical Review Letters, 2009, 102: 093002. doi: 10.1103/PhysRevLett.102.093002 [86] Lan Pengfei, Lu Peixiang, Cao Wei, et al. Isolated sub- 100 - as pulse generation via controlling electron dynamics[J]. Physical Review A, 2007, 76: 011402(R). [87] Pupeza I, Huber M, Trubetskov M, et al. Field-resolved infrared spectroscopy of biological systems[J]. Nature, 2020, 577(7788): 52-59. doi: 10.1038/s41586-019-1850-7 [88] Kepesidis K V, Jacob P, Schweinberger W, et al. Electric-field molecular fingerprinting to probe cancer[J]. ACS Central Science, 2025, 11(4): 560-573. doi: 10.1021/acscentsci.4c02164 [89] Glascoe E A, Zaug J M, Armstrong M R, et al. Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and Elevated Pressure[J]. The Journal of Physical Chemistry A, 2009, 113(20): 5881-5887. doi: 10.1021/jp809418a [90] Powell M S, Bowlan P R, Son S F, et al. A benchtop shock physics laboratory: ultrafast laser driven shock spectroscopy and interferometry methods[J]. Review of Scientific Instruments, 2019, 90: 063001. doi: 10.1063/1.5092244 [91] Först M, Manzoni C, Kaiser S, et al. Nonlinear phononics as an ultrafast route to lattice control[J]. Nature Physics, 2011, 7(11): 854-856. doi: 10.1038/nphys2055 [92] Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81. doi: 10.1038/nature10196 [93] Rybka T, Ludwig M, Schmalz M F, et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime[J]. Nature Photonics, 2016, 10(10): 667-670. doi: 10.1038/nphoton.2016.174 [94] Kling M F, Siedschlag C, Verhoef A J, et al. Control of electron localization in molecular dissociation[J]. Science, 2006, 312(5771): 246-248. doi: 10.1126/science.1126259 [95] Wirth A, Hassan M T, Grguraš I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200. doi: 10.1126/science.1210268 [96] Hassan M T, Luu T T, Moulet A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 2016, 530(7588): 66-70. doi: 10.1038/nature16528 -
下载:

