留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海交通大学“重明”激光等离子体实验装置及科学研究

高健 李博原 闫文超 刘峰 陈民

高健, 李博原, 闫文超, 等. 上海交通大学“重明”激光等离子体实验装置及科学研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.260005
引用本文: 高健, 李博原, 闫文超, 等. 上海交通大学“重明”激光等离子体实验装置及科学研究[J]. 强激光与粒子束. doi: 10.11884/HPLPB202638.260005
Gao Jian, Li Boyuan, Yan Wenchao, et al. “Chongming” laser-plasma experimental facility and scientific research at Shanghai Jiao Tong University[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.260005
Citation: Gao Jian, Li Boyuan, Yan Wenchao, et al. “Chongming” laser-plasma experimental facility and scientific research at Shanghai Jiao Tong University[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202638.260005

上海交通大学“重明”激光等离子体实验装置及科学研究

doi: 10.11884/HPLPB202638.260005
基金项目: 国家自然科学基金项目(12074251, 12225505,12175140,12475245);中科院先导专项(XDB0530303);国家重点研发计划项目(2021YFA1601700);上海交通大学2030B类计划项目
详细信息
    作者简介:

    高 健,jiangao24@sjtu.edu.cn

    通讯作者:

    陈 民,minchen@sjtu.edu.cn

  • 中图分类号: O53

“Chongming” laser-plasma experimental facility and scientific research at Shanghai Jiao Tong University

  • 摘要: 超短超强激光技术的快速发展,极大推动了物理学在极端强场环境下的前沿探索。相关研究涵盖紧凑型粒子加速器、高亮度辐射源、非线性强场量子电动力学及强激光驱动的轴子暗物质产生和探测等多个重要方向。过去十余年,上海交通大学在本领域开展了系统性的理论、模拟和实验研究,先后建成了基于单束百太瓦级激光的相对论等离子体研究平台及具备高精度时空同步的双束百太瓦级激光驱动的极端相对论等离子体研究平台。本文对新建成的双束百太瓦“重明”激光等离子体实验装置的整体构成、关键参数与核心特色进行介绍,并进一步阐述依托以往和新建成装置完成和计划开展的前沿科学研究工作,包括激光固体高次谐波、激光等离子体尾波加速、非线性康普顿散射及强激光轴子暗物质产生和探测。新装置的建成运行,将为极端相对论等离子体物理实验研究提供重要的平台支撑。
  • 图  1  “重明”激光装置实物照片及结构框图

    Figure  1.  Photograph of the “Chongming” laser facility and its block diagram

    图  2  “重明”激光等离子体实验装置的整体光路和腔体分布图,以及光束传输及双靶场系统的实物照片

    Figure  2.  Schematic layout of the overall optical path and vacuum chambers of the “Chongming” laser-plasma experimental facility, photograph of the beam transport and dual-target chamber system

    图  3  “重明”装置锐角靶场实物图,研究者在靶室内检查和调节双光指向

    Figure  3.  Photograph of the acute-angle target area of the CLEF and dual-beam pointing alignment inside the target chamber

    图  4  “重明”装置钝角靶场实物图和研究者在真空靶室内调节光路

    Figure  4.  Photograph of the obtuse-angle target area of the CLEF and optical path adjustment inside the vacuum target chamber

    图  5  靶面纵向预等离子体控制

    Figure  5.  Longitudinal pre-plasma control on the target surface

    图  6  靶面横向预等离子体调控

    Figure  6.  Lateral pre-plasma manipulation on the target surface

    图  7  基于弯曲等离子体通道的激光尾波级联加速

    Figure  7.  Staged laser wakefield acceleration based on curved plasma channels

    图  8  强场QED国际研究进展及计划:从经典散射到量子辐射

    Figure  8.  Roadmap of strong-field QED research: scaling from classical scattering to quantum radiation regimes

    图  9  全光学逆康普顿散射产生高能涡旋伽马光子的实验装置示意图及高斯模式与拉盖尔-高斯模式对撞激光在焦点处的光斑分布

    Figure  9.  Schematic of vortex gamma-ray generation via all-optical inverse Compton scattering; the focal spot patterns of the Gaussian and LG colliding laser

    图  10  四种激光碰撞构型产生的伽马射线角分布

    Figure  10.  Angular distribution of γ rays generated by four colliding laser modes

    图  11  基于强激光与尾波作用的轴子产生和探测方案

    Figure  11.  Intense laser based axion generation and detection scheme

  • [1] Papadopoulos D N, Zou J P, Le Blanc C, et al. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 2016, 4: e34. doi: 10.1017/hpl.2016.34
    [2] Li Wenqi, Gan Zebiao, Yu Lianghong, et al. 339 J high-energy Ti: sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684.
    [3] Lureau F, Matras G, Chalus O, et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41
    [4] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54.
    [5] Wang Xinliang, Liu Xingyan, Lu Xiaoming, et al. 13.4 fs, 0.1 Hz OPCPA front end for the 100 PW-class laser facility[J]. Ultrafast Science, 2022, 2022: 9894358.
    [6] Khazanov E, Shaykin A, Kostyukov I, et al. eXawatt center for extreme light studies[J]. High Power Laser Science and Engineering, 2023, 11: e78.
    [7] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228.
    [8] 黄海荣, 张亮琪, 刘维媛, 等. 超强激光与固体靶作用驱动量子电动力学级联和稠密正电子产生的研究进展[J]. 强激光与粒子束, 2023, 35: 012004

    Huang Hairong, Zhang Liangqi, Liu Weiyuan, et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35: 012004
    [9] Cole J M, Behm K T, Gerstmay E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-Wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [10] Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686.
    [11] Yu Jinqing, Lu Haiyang, Takahashi T, et al. Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses[J]. Physical Review Letters, 2019, 122: 014802.
    [12] Zhu Xinglong, Liu Weiyuan, Chen Min, et al. Efficient generation of collimated multi-GeV gamma-rays along solid surfaces[J]. Optica, 2023, 10(1): 118-124.
    [13] Ping Yongli, Zhong Jiayong, Wang Xiaogang, et al. Turbulent magnetic reconnection generated by intense lasers[J]. Nature Physics, 2023, 19(2): 263-270.
    [14] Xie Yu, Geng Jinjun, Zhu Xiwei, et al. Origin of FRB-associated X-ray burst: QED magnetic reconnection[J]. Science Bulletin, 2023, 68(17): 1857-1861.
    [15] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449.
    [16] Thaury C, Quéré F. High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43: 213001.
    [17] Gao Jian, Li Boyuan, Liu Feng, et al. Double optimal density gradients for harmonic generation from relativistically oscillating plasma surfaces[J]. Physics of Plasmas, 2019, 26: 103102.
    [18] Li Boyuan, Liu Feng, Chen Min, et al. High-quality high-order harmonic generation through preplasma truncation[J]. Physical Review E, 2019, 100: 053207.
    [19] Li Boyuan, Liu Feng, Chen Min, et al. Experimental demonstration of efficient harmonic generation via surface plasma compression with lasers[J]. Physical Review Letters, 2022, 128: 244801.
    [20] Kahaly S, Monchocé S, Vincenti H, et al. Direct observation of density-gradient effects in harmonic generation from plasma mirrors[J]. Physical Review Letters, 2013, 110: 175001.
    [21] Gao Jian, Li Boyuan, Liu Feng, et al. Divergence control of relativistic harmonics by an optically shaped plasma surface[J]. Physical Review E, 2020, 101: 033202.
    [22] Quéré F, Vincenti H. Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit[J]. High Power Laser Science and Engineering, 2021, 9: e6.
    [23] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270.
    [24] Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520.
    [25] Guo Zhiyuan, Liu Shuang, Zhou Bing, et al. Preclinical tumor control with a laser-accelerated high-energy electron radiotherapy prototype[J]. Nature Communications, 2025, 16: 1895.
    [26] Steinke S, van Tilborg J, Benedetti C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530(7589): 190-193.
    [27] Luo Ji, Chen Min, Wu Wanyang, et al. Multistage coupling of laser-Wakefield accelerators with curved plasma channels[J]. Physical Review Letters, 2018, 120: 154801.
    [28] 祝昕哲, 李博原, 刘峰, 等. 面向激光等离子体尾波加速的毛细管放电实验研究[J]. 物理学报, 2022, 71: 095202

    Zhu Xinzhe, Li Boyuan, Liu Feng, et al. Experimental study on capillary discharge for laser plasma wake acceleration[J]. Acta Physica Sinica, 2022, 71: 095202
    [29] Li Jianlong, Li Boyuan, Zhu Xinzhe, et al. Generation of a curved plasma channel from a discharged capillary for intense laser guiding[J]. High Power Laser Science and Engineering, 2023, 11: e58.
    [30] Zhu Xinzhe, Li Boyuan, Liu Feng, et al. Experimental demonstration of laser guiding and Wakefield acceleration in a curved plasma channel[J]. Physical Review Letters, 2023, 130: 215001.
    [31] Chen Siyu, Yan Wenchao, Zhu Mingyang, et al. A platform for all-optical Thomson/Compton scattering with versatile parameters[J]. High Power Laser Science and Engineering, 2025, 13: e56.
    [32] Chen Siyu, Lu Guangwei, Hu Xichen, et al. Demonstration of scissor-cross ionization injection in laser Wakefield accelerators[J]. Communications Physics, 2025, 9: 9.
    [33] Zhou Weijun, Yan Wenchao, Wang Jinguang, et al. Gamma-ray vortex burst in nonlinear Thomson scattering with refocusing spiral plasma mirror[J]. Ultrafast Science, 2023, 3: 0005.
    [34] Wei Mingxuan, Chen Siyu, Wang Yu, et al. Experimental evidence of vortex γ photons in all-optical inverse compton scattering[J]. Physical Review Letters, 2026, 136: 025001.
    [35] Peccei R D, Quinn H R. CP conservation in the presence of pseudoparticles[J]. Physical Review Letters, 1977, 38(25): 1440-1443.
    [36] Peccei R D, Quinn H R. Constraints imposed by CP conservation in the presence of pseudoparticles[J]. Physical Review Letters D, 1977, 16(6): 1791-1797.
    [37] An Xiangyan, Chen Min, Liu Jianglai, et al. In situ axion generation and detection in laser-plasma wakefield interaction[DB/OL]. arXiv preprint arXiv: 2504.12500, 2025.
    [38] An Xiangyan, Chen Min, Liu Jianglai, et al. Modeling of axion and electromagnetic fields interaction in particle-in-cell simulations[J]. Matter and Radiation at Extremes, 2024, 9: 067204.
  • 加载中
图(11)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2026-01-05
  • 修回日期:  2026-01-26
  • 录用日期:  2026-01-22
  • 网络出版日期:  2026-02-11

目录

    /

    返回文章
    返回